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Abstract

LLM inference places substantial demands on hardware including CPUs, GPUs, and mem-
ory, yet datacenter hardware utilisation remains low due to the rigid allocation of resources
in monolithic machine designs. Disaggregated computing, which separates different hard-
ware resources into pools, offers a promising solution to improve utilisation. However,
the most popular system for GPU disaggregation, rCUDA, no longer exists, and required
extensive source modification. We introduce a system for transparent remote CUDA execu-
tion in disaggregated environments, targeting llama.cpp as a representative LLM inference
engine. Built on FractOS, a capability-based distributed operating system, our approach
intercepts CUDA API calls and forwards them to a remote GPU node, requiring minimal
modifications to llama.cpp. We identify that naive remote CUDA suffers from excessive
RPC overhead, particularly during the decode phase where a typical LLM may launch
thousands of CUDA kernels. To address this, we implement a batched RPC optimisation
that exploits CUDA graph capture to reduce the number of RPCs per token from ∼ 1000
to fewer than 10 in the single-GPU case. Our evaluation shows that the prefill phase
has an overhead as low as 7% for Llama 2 7B and 1% for Llama 2 70B. For the decode
phase, we measure overheads as low as 12% for Llama 2 7B and 2% for Llama 2 70B. This
demonstrates the favourability of our system for larger models. We also test our system on
a multi-client benchmark, where for the moderately-sized Llama 2 13B model we obtain
TTFT and TPS overheads of just 1% and 5% respectively. These results demonstrate
that efficient remote GPU execution for LLM inference is not only feasible but can achieve
performance competitive with local execution, validating the potential of disaggregated
computing for AI workloads.
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Chapter 1

Introduction

LLMs (Large Language Models) have emerged as one of the most significant developments
in artificial intelligence, demonstrating remarkable capabilities across a wide range of tasks
from text generation to complex reasoning. The transformer architecture [1] has become
the foundation for modern LLMs, with models like the Llama family [2] achieving state-of-
the-art performance. However, LLMs are computationally demanding, requiring significant
GPU resources for both training and inference.

Meanwhile, research has shown that hardware utilization in datacenters is low [3]. Tradi-
tional datacenter designs organize resources into monolithic machines with fixed configu-
rations, leading to inefficient resource allocation when applications have varying hardware
requirements. Disaggregation has emerged as a promising solution to this issue. Rather
than organizing hardware into fixed machine configurations, disaggregated systems sep-
arate different types of resources – CPUs, memory, GPUs, and storage – into dedicated
pools that can be allocated according to application needs [4].

However, realising the benefits of disaggregation for GPU-accelerated applications presents
significant technical challenges. Most GPU applications, including LLM inference engines,
are designed to run on systems where the GPU and CPU are co-located and communicate
via high-bandwidth, low-latency interconnects like PCIe. Extending these applications
to work in a disaggregated environment requires mechanisms to execute GPU operations
remotely with minimal network overheads.

Previous work in this space includes rCUDA [5], a framework that intercepted CUDA
runtime API calls and forwarded them to remote GPU nodes. While rCUDA demon-
strated the feasibility of remote CUDA execution, the project is no longer available, and
its closed-source nature limits the ability to build upon its work. Furthermore, rCUDA re-
quired significant modifications to target applications, making it laborious for application
programmers.

This project aims to enable efficient remote GPU access for LLM inference in disaggregated
environments. We focus specifically on llama.cpp [6], a popular open-source LLM inference
engine known for its minimal dependencies and broad hardware support. We build our
system on top of FractOS [7], a distributed, capability-based OS designed specifically for
disaggregated environments. FractOS provides the necessary infrastructure for secure,
efficient communication between disaggregated resources. In particular, its support for
RDMA enables high-performance data transfers between remote nodes, which is essential
for data-heavy GPU workloads.

We demonstrate that remote CUDA execution for LLM inference is not only feasible but
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can achieve performance competitive with local execution when properly optimised. Our
work provides a foundation for future research in disaggregated LLM inference systems.
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Chapter 2

Background

We provide an overview of LLM inference and the internals of llama.cpp, discussing the
benefits of distributed LLM inference and existing work in this space. Then, we explain
the main parts of the CUDA API that are necessary for this project. We move on to
the necessary prerequisites to understand FractOS, which is a distributed OS that is built
to take advantage of disaggregation. Finally, we consider existing work in remote CUDA
execution, and its link to disaggregated systems.

2.1 Large Language Models

In the most general terms, an LLM is a computational model that has been trained on a
very large corpus of text. Text generation has been approached with many different neural
network architectures, including RNNs (Recurrent Neural Networks), LSTMs (Long Short-
Term Memory networks), and CNNs (Convolutional Neural Networks) [8]. However, the
transformer architecture has become nearly synonymous with LLMs for several reasons:

• Transformers have a weak inductive bias compared to other architectures, making
them better at generalising as long as enough training data is available [9][10].

• Multi-head attention can be parallelised to take advantage of GPUs [11], unlike RNNs
and their variants which require sequential computation.

• The self-attention mechanism can capture long-range dependencies in contrast to
RNNs, which suffer from forgetting due to vanishing gradients [12], and CNNs, which
have a hard limit according to the size of the convolution kernel. Even LSTMs, which
were designed to handle long-range dependencies better than RNNs, still suffer from
forgetting [13].

Before being fed to a transformer, natural language must first be tokenised. A token is a
sequence of characters, with an associated vector embedding which represents its ’mean-
ing’. The original transformer architecture contained an encoder, which converts a token
sequence to a vector, and a decoder, which takes this vector and another token sequence to
generate a transformed token sequence. This architecture was originally intended for use
in machine translation [1], since the encoder can capture the entire meaning of a passage in
the source language, while the decoder can auto-regressively generate tokens in the target
language. For text generation based on an initial prompt, however, it is common to discard
the encoder. For example, the Llama 2 family of models are decoder-only [2].
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2.1.1 Self-attention

The key mechanism used by the transformer architecture is self-attention [1]. Key, Value,
and Query matrices are calculated for the input token sequence according to

K = XWK , V = XWV , Q = XWQ.

X ∈ Rn×d is a stack of vectors, where each vector corresponds to an input token. n is
the sequence length, and d is the model dimension. WK , WV , and WQ are learned weight
matrices. Attention is then calculated as

Attention(Q,K, V ) = softmax(QKT /
√
dk)V,

where dk is the key/query dimension, used as a scaling factor to prevent the operand
from becoming too large. Transformers use multi-head attention blocks, which compute
attention in parallel with different weight matrices (allowing each head to focus on different
features). Blocks of multi-head attention and feed-forward layers are then stacked together
to produce the decoder.

2.1.2 KV Caching

The Key and Value entries for a given embedding only depend on the previous embeddings
– this is called masked self-attention [1], and it is a consequence of the fact that tokens are
generated auto-regressively. Importantly, this means that a token’s Key and Value entries
will not change once computed. We can store the Key and Value matrices in a KV cache, so
it is only necessary for each new token to generate Key and Value entries for itself, greatly
reducing the computation required. However, the KV cache grows linearly, and for long
contexts this can eclipse the size of the model itself. Techniques such as PagedAttention
have been developed to reduce VRAM usage by strategically offloading pages of the KV
cache to RAM [14]. Of course, both the KV cache and model itself can be split across
multiple GPUs, but care must be taken to minimise communication overheads.

Since the first token must generate the KV cache from scratch, LLM inference can be split
into two phases with very different characteristics: the prefill phase (generating the first
token) and the decode phase (all subsequent tokens). The differences between these phases
are summarised in fig. 2.1.

During the prefill phase, the input token sequence must first be split into batches. Larger
batches are generally faster to process due to highly efficient GPU routines for matrix
multiplication, such as NVIDIA’s CUBLAS library. However, they also use more GPU
memory [15], which can be a problem when the context is also large, since the KV cache
scales with context length. Since the sizes of the key and value matrices scale with the
number of input tokens, the prefill phase is typically compute-bound, and has high GPU
utilisation [16].

The decode phase generates each token using the KV cache from the previous step, up-
dating the cache entry for the new token. Because key and value matrices only need to be
calculated for a single token, the computation for this phase is much lighter. Unlike the
prefill phase which involves large matrix-matrix multiplications, the decode phase instead
mainly consists of matrix-vector multiplications [16]. While these are less computationally
intensive, they are also less able to take advantage of highly parallelised GPU routines.
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Figure 2.1: Difference between the prefill and decode phases. Note that the various matrices
(input, key, value, query) are shown as sequences, where each element is a vector, to better
relate them to the input tokens. In reality, these are all just flattened matrices. In the
decode phase, we represent pre-computed Key and Value entries in lighter colours.
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In practice, the decode phase is memory-bound, as the self-attention mechanism must fre-
quently pull from the KV cache [16][17]. This effect is exacerbated if the KV cache is too
large to fit in VRAM and must be offloaded to RAM.

2.1.3 Llama.cpp

Llama.cpp is one of the most popular open-source LLM inference engines, known for sup-
porting a wide range of hardware and having minimal dependencies [6], though we focus
only on the CUDA backend. The structure of an inference request is as follows:

• Model loading – The model weights are copied from storage to VRAM, with strate-
gies such as memory-mapping to minimise transient RAM usage.

• Tokenization and embedding – The user provides a prompt, which is tokenized
on the CPU. Tokenisation involves sequential processing and conditional logic, so it is
better suited to the CPU than the GPU. The tokens are converted into embeddings,
positional embeddings are added, and the tensors are copied to the GPU.

• Token generation – Llama.cpp generates each output token sequentially, where the
first token is responsible for filling the KV cache.

For this project, we are mainly concerned with the token generation process:

• Update embedding – The tensor representing the current token sequence on the
GPU is updated based on the previously sampled token (since sampling occurs on
the CPU). This host-to-device memory copy is performed asynchronously.

• Construct computation graph – Each node of the computation graph produced
by llama.cpp represents some primitive operation, such as a memory copy or launch-
ing a GPU kernel (e.g. softmax, matrix-matrix multiplication). This graph does not
change significantly token-to-token, except for some memory addresses that need to
be updated.

• Execute computation graph – Llama.cpp iterates over the computation graph,
executing the operations asynchronously. The vast majority of these operations are
kernel launches, with a minority consisting of CUBLAS GEMM operations (GEneral
Matrix Multiplication) and device-to-device memory copies. In the case of multiple
GPUs, there is one computation graph per device, and stream/event synchronisation
is used to coordinate work.

• Fetch output token – A device-to-host memory copy is performed asynchronously
to fetch the output logits (the raw per-token probabilities generated by the model).

• Synchronize – Llama.cpp waits for all GPU work to finish; note that all operations
up to this stage are asynchronous. Once complete, the output logits will be present
in RAM.

• Sampling – A sampling strategy is applied to the logits. Modern sampling strategies
can involve complex conditional logic, so this is done on the CPU.

2.1.4 Inference server

Llama.cpp comes with an server application which can serve inference requests over HTTP
[18]. Since this server allows for the most interesting and realistic evaluation of usage
patterns, in particular, a scenario where multiple clients simultaneously have conversations
with the model, this is the application we chose to work with.
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The high-level architecture can be seen in fig. 2.2. The concept of ’slots’ is a virtualisation
of GPU memory. Each slot maintains an independent KV cache, which means the number
of slots is a trade-off; more slots means that more inference requests can be processed
in parallel, increasing throughput, but the maximum context length for each request is
reduced.

Figure 2.2: The overall architecture of the llama.cpp server. The clients shown on the
right, in dotted boxes, should be interpreted as the same clients as on the left (i.e. the
figure wraps around). Condition variables are the main synchronisation mechanism used
to ensure new elements in the queue are processed as quickly as possible.

A batching strategy must be used to process inference requests from different clients in
parallel. One example of such a strategy is static batching [19], which is where a fixed
number of requests are batched together, and the batch is considered to be complete only
when all requests have received an end-of-sequence token. The size of the batch does not
change over its lifetime. This is quite inefficient because in real-world usage, conversations
will usually have highly variable lengths. GPU utilisation suffers when long requests are
batched together with short ones, since it is not possible to schedule more requests until
the longest one has completed.

Instead, the llama.cpp server uses continuous batching [20]. This is also known as iteration-
level batching, because the batch is updated for each generated token, rather than at the
end of the longest request. In continuous batching, requests will immediately be replaced
with other requests when they finish, with the goal to keep the total number of requests
in the batch approximately constant. This keeps GPU utilisation high and reduces the
average waiting time for requests in the queue.

A final important point is that the llama.cpp server only uses a single thread to call CUDA
APIs. This allows us to simplify our design for CUDA interception later on, at the cost of
not being as general.

2.1.5 Distributed LLM inference

One of the most notable trends in LLM development has been the rapidly increasing
number of model parameters [21]. LLM scaling laws are empirical assertions that show
that dataset size, amount of compute, and model size together predict LLM performance
with a high degree of accuracy, without regard to other harder-to-quantify qualities such
as the fundamental architecture or algorithms.

While smaller models can be run easily on a single GPU, larger models are often too large
to fit due to limited VRAM, and must be split among multiple GPUs. Failing that, it may
be necessary to split the model across multiple nodes, each with multiple GPUs. Even
if it is possible to fit the model onto a single node, there may be undesirable limitations
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on the size of the KV cache (and therefore the maximum context length), as well as the
maximum batch size, making the multi-node setup preferable.

The dominant paradigm for distributed LLM inference is to run instances of inference
engines as servers, which communicate with each other to transfer tensors according to
their parallelism scheme. For example, llama.cpp provides an RPC backend [22]. An
overview is shown in fig. 2.3. This works by running any backend (such as the CUDA
backend) as an RPC server, which an RPC client such as the llama.cpp server can connect
to. The RPCs exposed by the server include operations like getting/setting tensors and
executing serialised computation graphs, consistent with the interface that other backends
provide. This is a very high-level approach – roughly five RPCs are called to generate a
single token, compared to a thousand or so underlying CUDA operations (these numbers
assume a 7B model such as Llama 2 7B).

Figure 2.3: The architecture of the llama.cpp RPC backend. A single llama.cpp application
can use many different backends, which may be on the same or different machines.

However, llama.cpp’s support for distributed inference is relatively immature; for example,
the RPC backend is unable to use multiple GPUs on a single node, making it necessary
to run one instance of the server per GPU. In practice it is more common to use other
inference engines like vLLM for distributed inference. This engine integrates Ray, allowing
GPU computation to be scheduled across vLLM instances running in containers on GPU
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nodes [23]. Each of these ’Ray Actors’ loads a slice of the model, either layer-wise or tensor-
wise depending on the type of parallelism used. When an inference request is received by
the driver process, which is responsible for coordinating communication, it broadcasts
the necessary input tensors across the Ray Actors. The Ray Collective Communication
Library is used to perform efficient data transfer between nodes [24]. It acts as a wrapper
around libraries such as NCCL (NVIDIA Collective Communications Library), allowing
for highly-optimised data transfer over NVLink or Infiniband when available [25].

2.2 CUDA

While we focus on the parts of the CUDA API that are needed by llama.cpp, it should be
noted that these are all considered foundational components that are used by a wide range
of CUDA programs.

2.2.1 Contexts and Memory

A CUDA context is bound to a single CUDA device, and is responsible for keeping track of
state like memory, streams, and events. Contexts can be thought of analogously to CPU
processes, since each context’s objects are isolated from other contexts. However, Unified
Virtual Addressing allows all contexts to share a single virtual address space with the
host program. This means that it is not necessary to explicitly specify whether a pointer
represents host or device memory, or which device that memory resides on. In the case of
llama.cpp, there are only a few cases where this behaviour is relied upon - in most cases,
the device is explicitly specified, likely for the sake of readability.

2.2.2 Streams and Events

A CUDA stream is an ordered queue of tasks associated with a particular context. Tasks
in different streams can execute concurrently, with the interleaving controlled by the GPU
scheduler. Streams allow dependencies to be expressed between operations, allowing for
better GPU utilisation by, for example, overlapping compute and memory operations.

CUDA events are the primary way to express inter-stream dependencies. An event can
record the state of a stream, and then force another stream to wait until the event has
completed (which means all the tasks it recorded have completed). Crucially, these two
streams do not have to be on the same device, allowing for inter-GPU synchronisation.
Llama.cpp supports two main types of multi-GPU parallelism: pipeline parallelism and
tensor parallelism.

In pipeline parallelism, the layers of a model are split across GPUs, such that each GPU
passes an input through its own layers before passing the result on to the next GPU. This
does not improve single-request latency, but has two key benefits: it allows running models
that are too large to fit on a single GPU; and multiple requests can be pipelined, increasing
throughput. Events are used to force streams on each GPU to wait for the result of the
previous one.

On the other hand, tensor parallelism splits the rows of each weight matrix in a model across
multiple GPUs. A ’main’ GPU is chosen, which aggregates the results of the auxiliary
GPUs for each layer. This does improve both latency and throughput, but involves more
inter-GPU communication, the speed of which depends on the interconnect used – for
example, NVLink is faster than PCIe [26]. Events are used here to force the main GPU to
wait for the results of the auxiliary GPUs. Because of the higher volume of inter-GPU data
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transfers, it is common to use tensor parallelism for GPUs on a single node, and pipeline
parallelism between GPUs on different nodes [23].

2.2.3 Kernel launch

A kernel is a CUDA function that can invoked from either the CPU (host code) or the
GPU (device code), and is marked with __global__. Kernel launch is asynchronous,
which means that it only involves setting up the arguments and placing the kernel on a
GPU queue. Tasks in these queues are then dispatched by the scheduler. However, if a
queue becomes full due to a large number of long-running kernels (or other asynchronous
CUDA operations), then any subsequent kernel launches will block on the host until a
space becomes available in the queue [27][28]. This means that the overhead of a kernel
launch can grow from the time taken to enqueue a task, to the time taken for a kernel to
finish execution. Unfortunately, this behaviour is undocumented by NVIDIA, which makes
it hard to precisely estimate its effect.

2.2.4 CUDA graphs

Because each CUDA call has an overhead associated with accessing the GPU, CUDA
graphs were developed as a way to compress a graph of CUDA operations into a single
API call. CUDA graph capture targets a specific stream, so dependencies between streams
must be explicitly specified using event APIs.

Once a graph has been captured, it must be ’instantiated’ into an executable CUDA graph.
The CUDA driver can make optimisations such as coalescing memory accesses at this stage.
An executable graph can then be launched on any stream. In practice, it is unlikely that a
complex application would execute the exact same sequence of CUDA operations forever
– in llama.cpp, the memory addresses of copy operations change for each token. To solve
this, CUDA provides APIs for extracting and modifying individual nodes within a CUDA
graph, then re-instantiating the executable graph for a lower cost than instantiating it from
scratch.

In summary, CUDA graphs provide two main benefits for applications: reduced CUDA
API overhead, particularly for long sequences of kernel launches; and optimisations from
the CUDA driver, that are only possible when given the entire graph.

2.3 Disaggregation

Data centres have predominantly been designed as clusters of machines with similar re-
source configurations. Jobs are assigned ’slices’ of machines as necessary to perform their
tasks [4]. This works well when the resource demands of jobs are similar, and do not
change much over time. However, the increasing popularity of heterogenous and spe-
cialised hardware such as GPUs and FPGAs, for tasks such as AI inference [29], has
revealed inefficiencies in this setup:

• The varying resource demands of different jobs makes it difficult to achieve high
utilisation [3]. For example, one job may require all of the GPUs but only a fraction
of the CPUs on a single machine. This can be viewed as a type of bin-packing
problem [30].

• Changes in resource demands are unnecessarily costly – switching to a new type of
hardware requires retrofitting a large number of machines, leading to high costs and
loss of availability. Upgrading the GPUs in a cluster, for example, also makes the
CPUs and storage of those machines unavailable for the duration.
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• This design is fragile, since a single faulty hardware component can bring down an
entire node, affecting unrelated hardware.

(a) Without disaggregation. Nodes 1 and 2 cannot be used by any other jobs, since
they have no free CPU and RAM respectively, despite the fact that they each have a
considerable amount of the other resource.

(b) With disaggregation. The free CPU and RAM are now available for another job to
use.

Figure 2.4: The utilisation argument for disaggregation.

These issues motivate a design where resources are disaggregated, such that CPUs, memory,
GPUs, and other types of hardware are organised into resource pools. Hardware within
these pools can then be provisioned according to the needs of the currently running jobs.
This argument is visualised in fig. 2.4.

2.3.1 Existing work

To realise the full benefits of disaggregation, significant effort has been dedicated to re-
thinking the design of the operating system. Designs which used a simplified form of
disaggregation include the Multikernel, which proposed that in order for operating sys-
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tems to adapt to increasing heterogeneity in CPU cores, they must treat the cores as a
kind of distributed system [31]. The Multikernel model assumes no shared memory be-
tween the kernels, instead relying purely on message-passing, much as a distributed system
would.

In the context of disaggregated data centres, a distributed operating system becomes ap-
pealing as it is undesirable to have to store all hardware drivers on a single monolithic OS.
Splitting the kernel into separate parts allows each part to have a well-scoped responsibil-
ity – this was the idea behind ’monitors’ in LegoOS [32]. Monitors together form what
LegoOS calls the ’splitkernel’ model, where each monitor manages a particular hardware
resource. Taking advantage of disaggregation, LegoOS offers advantages such as higher
utilisation and fault-tolerance, while maintaining performance comparable with monolithic
Linux servers.

Other systems leverage disaggregation specifically for memory. For example, Li et al. found
that memory utilisation of cloud applications is generally quite low [33]. By applying
disaggregation to memory to create a shared memory pool, it was possible to increase
memory utilisation, reducing costs for data centre users and operators.

At a higher level of the stack, software frameworks such as Apache Beam are able to
execute data processing pipelines over distributed systems [34]. However, executing com-
plex application logic directly on hardware pools goes against disaggregation, since the
disaggregated hardware should purely exist to provide hardware-specific services for other
processes. Rather than attempting to realise the benefits of disaggregation through higher-
level software layers, research in disaggregated systems has primarily sought a bottom-up
approach where the underlying platform is designed with disaggregation in mind.

2.4 Capabilities

A capability is a token of authority which allows the holder to access a resource according
to a set of permissions [35]. For example, a memory capability could grant the holder
read-only access to a block of memory held by a process. In a capability-based operating
system, any access to a resource must be accompanied by the correct capability, resulting
in a fine-grained access control model. Capability-based security can be contrasted with
ambient authority, which is where a process inherits the permissions of the context it is
used in.

One of the vulnerabilities of ambient authority is the ’confused deputy’ attack [36]. This
is where a process ’tricks’ another process into accessing some resource on its behalf.
Because ambient authority relies only on the context within which a resource is accessed,
a process with permission to a resource can be allowed to access that resource on behalf of
another process without that permission. Fundamentally, the operating system is unable
to differentiate between a direct resource access and one done on behalf of another process.

By contrast, a capability-based OS would require a process to not only have the name
of a particular resource to be able to access it, but also a capability with the necessary
permissions. In order for a process to allow another process to access a resource on its
behalf, it would need to explicitly delegate the capability, eliminating the risk posed by
the confused deputy attack.

There are several key operations that are fundamental to any capability-based OS:

• Creation: a capability allowing access to some object, under some set of permissions,
is created.
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• Invocation: a capability can be invoked to access the object it refers to.

• Delegation: a capability can be delegated to another process. In the previous exam-
ple, this step would be necessary for a process to allow another to access a resource
on its behalf. This delegated capability is considered a child capability.

• Revocation: a capability (and all of its child capabilities) are removed.

2.4.1 Existing work

The idea of using capabilities for access control has been around in some form since the
1960s [37], with the first successful capability-based operating system widely regarded to be
HYDRA [38]. Compared to other designs in the same time period such as the Cambridge
CAP Computer [39], HYDRA was the first to propose that capabilities should refer to
a more abstract notion of ’object’ rather than directly to a segment of memory. This
is useful for representing permissions not only to access memory locations, but to make
certain requests to other processes. A capability referring to a ’request object’ grants the
holder the right to call a particular RPC. This is useful in many-core single-node systems,
but essential in distributed systems.

As computer hardware moved towards relying on large numbers of CPU cores in order
to maintain performance improvements, some researchers investigated whether capability-
based operating systems can scale to machines with large numbers of non-coherent, het-
erogeneous cores. SemperOS was a capability-based operating system which showed, for
the first time, that such a system is possible [40]. While capabilities were shown to scale
for many-core systems, it remained to be seen whether they could also scale to many-node
distributed systems.

2.5 FractOS

FractOS is a distributed, capability-based operating system designed for use in disag-
gregated environments, offering high performance alongside strong security guarantees [7].
The creators of FractOS envision future data centres as consisting of pools of disaggregated
hardware resources, containing co-located CPUs or SmartNICs. Notably, these CPUs are
’wimpy’ CPUs, in that they have low single-core performance but are more energy-efficient
than ’brawny’ CPUs [41]. This makes them suitable for co-location since they ultimately
delegate the heavy computation to the specialised hardware, and are only responsible for
converting RPCs to hardware instructions.

Almost every operation in FractOS, from the perspective of applications running on it,
is asynchronous. Most FractOS APIs return futures, which are typically either stored in
some container for later retrieval, associated with a callback, or directly waited on. Asyn-
chronicity is particularly important for FractOS, since its disaggregated nature means that
common operations may have to wait significantly longer for network transfers. Returning
futures from FractOS API calls gives programmers the option to design their applications
in a way to avoid these overheads.

One of the key contributions of FractOS is the ability for different hardware types to
directly invoke each other, without going through a central point of control. This allows
applications to be designed to avoid redundant network messages, reducing latency and
bandwidth usage. However, this feature of FractOS is not as relevant for our project, since
we only consider communication between a CPU node, which performs the heavy CPU
computation for llama.cpp, and a GPU node, which we offload the model layers and KV
cache to. Nonetheless, more complex features such as streaming model weights directly
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from an SSD into GPUs (bypassing the main CPU) are possible in FractOS. The Future
Work chapter gives examples of such features that can make use of the unique features of
FractOS.

2.5.1 Capabilities

In FractOS, there are two types of capabilities that are most commonly used:

• Request capabilities – These represent the right to invoke an RPC with a given
set of arguments. It is common to extend request capabilities by adding arguments,
but arguments cannot be taken away.

• Memory capabilities – These represent the right to access a region of memory with
specific permissions (typically read-only or read-write). They can be diminished to
form new memory capabilities with a subset of the original memory region, or a
subset of the original permissions.

When an application wants to use another service for the first time, it must get the initial
request capability from somewhere – this is the purpose of the GNS (Global Name Service).
Services advertise their RPCs on the GNS, providing an entry point for applications. A
common pattern is for a client to call an RPC to create an object on a server, and the
server responds with request capabilities which allow the client to manipulate and destroy
that object (destroying the object revokes all capabilities). Objects will often be able to
create other objects, creating a tree representation.

2.5.2 Controllers and Channels

FractOS controllers form part of the TCB (Trusted Computing Base), and take on respon-
sibilities such as storing capabilities – user programs do not hold capabilities directly, but
instead hold indices into a capability table, much like Unix file descriptors. Controllers
expose a set of syscalls to FractOS processes registered with them, allowing operations
such as creating capabilities, diminishing capabilities, and copying memory via RDMA.

For a process to connect to FractOS, it must be associated with a channel, which in turn
is associated with a controller. Channels run event loops to handle incoming requests
and data, and check if any futures have been fulfilled. A common pattern in FractOS
applications is to register a function as a callback, such that the channel will automatically
call that function when it detects the associated future has been fulfilled.

2.5.3 Applications and Services

Every process associated with a FractOS controller is fundamentally treated the same,
but when creating systems, it is common to draw a distinction between applications and
services. While applications have the usual meaning, a ’service’ has a special meaning in
the context of disaggregation.

Services refer to programs that are attached to pools of disaggregated hardware, and
have the responsibility of converting FractOS RPCs into driver commands. For example,
FractOS already has services for simple GPU and storage operations. Since it is not possible
to directly run these kinds of programs on GPUs or other accelerators, each hardware
pool requires a co-located CPU or SmartNIC. While this may seem like a violation of
disaggregation, we argue that as long as the services running co-located with these hardware
pools solely act as ’network-layer drivers’ for RPCs, we can still obtain the benefits of
disaggregation.
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2.6 rCUDA

It is clear that non-disaggregated systems often suffer from suboptimal utilisation. In the
case of GPUs, this is not only a waste of the hardware investment, but also highly energy-
inefficient, since GPUs use a significant amount of power even when idle. This was the
motivation for rCUDA, a framework for executing CUDA operations on remote GPUs [5].

rCUDA works by intercepting CUDA runtime API calls with a wrapper library, then
forwarding these calls over the network to a daemon running on a machine with an NVIDIA
GPU. This daemon converts incoming requests to CUDA driver API calls – the driver
API was used as it provides finer control, and enables things that are not possible with
the runtime API (such as managing kernel modules, which the authors describe as being
necessary to get kernel launch interception to work). This system allows a large number
of nodes without GPUs share a relatively small number of nodes with GPUs, reducing the
total number of GPUs, which improves energy efficiency. The authors describe a few key
challenges:

• Kernel launch in CUDA relies on opaque data structures and undocumented functions
to go from host code stubs to the actual device code. Therefore, they manually
separate host and device code in existing CUDA applications. The device code is
compiled and loaded into a module on the CUDA daemon. The host code must be
modified to explicitly set up arguments and invoke an RPC, completely stripping
away the use of the CUDA API. Needless to say, this process is extremely laborious.
The rCUDA authors describe having to modify between 0.0-11.7% of codebases to
support rCUDA, which can easily become unmanageable in large codebases.

• Host-to-device and device-to-host memory copies were inefficient due to the need
to first copy to RAM on the GPU node, then copy to VRAM. This also violates
disaggregation (although the authors did not refer to disaggregation in their paper,
we view their work through the lens of this field).

Unfortunately, the rCUDA project no longer exists. The website has been taken down, and
the code was never open-source. Details of how they authors chose to implement particu-
larly tricky operations, such as kernel launch, are not available, and any systems that we
implement cannot be evaluated against rCUDA. The original paper gives us some limited
insight into the challenges they faced, which we can use to inform our own exploration.
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Chapter 3

Motivation

Research in disaggregated systems has shown that hardware utilisation in datacenters
remains low; for example, Li et al. find that up to 25% of DRAM is unused in Azure
datacenters, due to DRAM becoming ’stranded’ when CPU cores on machines are fully-
allocated [42]. The disaggregation of hardware resources, such as accelerators and memory,
is posed as a possible solution. Meanwhile, we find that AI inference can draw on a wide
range of hardware, including GPUs, CPUs, TPUs, FPGAs, and ASICs, among others
[43][44]. Combined with the increasing importance of AI inference more broadly, we see
this application as a particularly interesting target for disaggregation.

rCUDA is the closest piece of existing work to what we are trying to achieve, as it aimed
for increased utilization on a pool of NVIDIA GPUs by separating application logic and
CUDA computation. However, the project no longer exists, making it difficult to evaluate
on modern LLM workloads. Thus, we wish to produce a system which allows CUDA
applications to efficiently access remote NVIDIA GPUs in a disaggregated environment.

To narrow the scope of our project to a viable level, and to give us a specific application to
use to track the performance of our system, we focus on implementing what is necessary
for llama.cpp. This codebase is relatively easy to modify compared to other systems such
as vLLM and ExLlamaV2, due to having minimal dependencies.

Fundamentally, disaggregation aims to disaggregate all different types of hardware re-
sources from each other, not just CPUs and GPUs. One could imagine that we could
extend our system to use not just remote NVIDIA GPUs, but FPGAs, AMD GPUs, and
other kinds of accelerators. Thus, the wide-ranging support that llama.cpp has for different
hardware backends (such as the HIP backend for AMD GPUs), with a common interface
making it possible to seamlessly switch between them, makes it especially compatible with
disaggregation in our view.

With this in mind, the key objectives of our project are as follows:

• Create a system to intercept CUDA API calls produced by llama.cpp, and forward
them to a remote service which will actually execute the CUDA operations.

• Minimize any necessary modifications to the llama.cpp source code, with the idea
that this system could eventually be extended to support a wide range of CUDA
applications.

• Analyse the performance of our system when naively converting local CUDA calls to
RPCs, and investigate what are the most meaningful optimisations we can make to
minimise this overhead.
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• In line with disaggregation, avoid adding additional responsibility to the CUDA
service beyond that which is absolutely necessary to convert RPCs to CUDA driver
calls.

We considered what distributed platform to build our system on top of – FractOS seemed
like a natural choice. It is specifically designed to take advantage of disaggregation, and in
the future, additional features such as directly loading model weights from SSD to VRAM
could be added (though we do not cover this in our project). FractOS already had support
for basic remote GPU operations, making it easier to get started, though note that it did
not initially have support for API interception (so applications would have to explicitly
use FractOS APIs). It also has a relatively low RPC overhead of about 30us, according to
internal micro-benchmarks, which aligns with our goal to minimise overhead.
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Chapter 4

Design

Our overall system in shown in fig. 4.1. There are four main components:

• The client, which sends inference requests to the llama.cpp server over HTTP. For
evaluation purposes, we refer to this as the benchmark.

• The llama.cpp server, which is part of the llama.cpp repository. The changes to the
source code of the llama.cpp server and the CUDA backend are minimal, and are
explained in the Implementation chapter.

• The CUDA interceptor. This shared library is injected into the llama.cpp server via
LD_PRELOAD, allowing it to capture CUDA API calls and replace them with RPCs to
the CUDA service.

• The CUDA service. This has a library component, which exposes RPCs used by the
interceptor, and a server component, which runs on a remote machine with a GPU
and is responsible for executing CUDA operations via the CUDA runtime and driver
API.

Essentially, our system transparently replaces local CUDA operations with remote ones
by making RPCs to a remote service, similarly to rCUDA. The main difference is that we
target a specific application (llama.cpp) rather than implementing the entire CUDA API
(except for graphical APIs), as rCUDA did. While not as generally applicable, this allows
us to invest more time into optimising our system to minimise the gap between local and
remote CUDA execution.

Nonetheless, it should be mentioned that although the CUDA APIs to implement were cho-
sen based on what is necessary to run llama.cpp, we believe we have provided a foundation
upon which additional CUDA API support can be readily added to support a wide range
of CUDA applications. The main CUDA APIs supported by our system are as follows:

• Memory allocation – cudaMalloc, cudaFree, cudaMallocHost, and
cudaFreeHost.

• Memory manipulation – cudaMemcpyAsync and cudaMemsetAsync.

• Kernel launch – cudaLaunchKernel.

• Stream management – cudaStreamCreate, cudaStreamDestroy,
cudaStreamSynchronize and cudaStreamWaitEvent.

• Event management – cudaEventCreate, cudaEventDestroy, cudaEventRecord,
and cudaEventSynchronize.
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Figure 4.1: The overall system architecture. Our main contributions are shown in
turquoise, noting that the CUDA service already existed, but we made significant ad-
ditions to it.
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• Device management – cudaGetDevice, cudaSetDevice, cudaGetDeviceCount,
and cudaGetDeviceProperties.

• CUDA graphs – cudaStreamBeginCapture, cudaStreamEndCapture,
cudaGraphInstantiate, cudaGraphLaunch.

• CUBLAS functions – cublasCreate, cublasDestroy, cublasGemmEx, etc.

4.1 CUDA interceptor

The CUDA interceptor captures CUDA runtime and CUBLAS API calls from the llama.cpp
server. However, both of these use the CUDA driver API under the hood. Therefore, it
would be more general to intercept the underlying CUDA driver API calls. However, there
are technical reasons why this is difficult (we elaborate on these in the Implementation
chapter), so we opted to leave this extension for future work.

Key aspects of our design of the CUDA interceptor, including our philosophy and assump-
tions we make on the application using it, are outlined below.

Invisible to the application – We aim for no or minimal modifications needed to the
target application for it to work with our CUDA interceptor. One of the key ways we
maintain this ’invisibility’ is via the use of fake resource handles. Many CUDA APIs rely
on handles, which are pointers to opaque data structures, to represent different CUDA
objects (such as streams and events). Of course, these pointers become meaningless when
referring to a remote machine, so instead we provide ’fake’ handles that are generated like
unique IDs. These IDs are mapped to objects which can communicate with the CUDA
service via synchronous FractOS RPCs.

Note that although the RPCs themselves are synchronous (i.e. we wait for a response, typ-
ically either success or error), most of the CUDA operations themselves are asynchronous.

High performance – Of course, applications are not restricted to using CUDA remotely
via the CUDA interceptor only; it is possible to directly call RPCs exposed in the library
component of the CUDA service. Our project can be seen as an investigation into how
efficiently we can perform remote CUDA operations, while not requiring any additional
effort from the application programmer. To that end, we spend a significant portion of our
efforts to search for both application-specific and general optimisations to our system.

Preference for local handling – In general, we try to do as much work using the local
state as possible, since minimising the number of RPCs was found to be the best way to
improve performance. An example of this is where possible, we attempt to raise errors
caused by invalid arguments to intercepted CUDA APIs without having to perform an
RPC. A recurring pattern is to check whether a given resource handle is valid by searching
for it in the appropriate map, stored in the local interceptor state.

Caching – We make heavy use of local caches to avoid unnecessary RPC calls. One
example is that when we find a function in a server-side CUDA module, we store it locally
to prevent having to look it up again. Another example is using the same CUDA graph
object by just resetting its state between inference requests, rather than destroying it and
creating a new one via a call to the CUDA service.

4.2 CUDA service

The CUDA service existed before this project, but we modified it to support all the
CUDA APIs required by llama.cpp. It was already able to support memory allocation,
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kernel launch, and device/context management; our main contributions are memory copy,
stream/event management, CUBLAS APIs, and a limited form of CUDA graphs. The ser-
vice consists of two parts: the library, which exposes RPCs that are called by the CUDA
interceptor; and the server, which handles those RPCs and calls the CUDA API.

4.2.1 Library

Most of the logic in the library is straightforward, and simply packs arguments together
to send them to the server using FractOS. A notable exception is CUDA graphs, which
involves some more complex state tracking, and this is discussed in the Implementation
chapter.

4.2.2 Server

The server component of the CUDA service runs an event loop which waits for incoming
requests, then handles them according to their request capability. While CUDA runtime
API functions can, for the most part, be fairly easily translated to driver API functions,
this is not the case for the CUBLAS API. Therefore, we violate disaggregation slightly be
directly calling CUBLAS functions on the server. Note that this is the only instance where
non-driver API functions are used on the server.

The server keeps track of a tree of objects. This tree is particularly important for CUDA
operations which require accessing multiple CUDA objects, such as cudaStreamWaitEvent,
since it is possible to traverse up the tree to a common ancestor, then traverse downwards
to find the desired object.
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Chapter 5

Implementation

We break up the implementation by the part of the CUDA API that was targetted, which
closely follows the actual development process.

5.1 Memory allocation and access

In FractOS, memory is primarily accessed and transferred using capabilities, and we follow
this pattern for our CUDA interceptor. A call to cudaMalloc is converted to an RPC to the
CUDA service, which returns a memory object. This object contains a memory capability
which can be diminished as necessary to obtain smaller regions of memory. The underlying
base pointer is directly exposed to llama.cpp, such that any references to memory within
the memory region can be resolved, and the correct capability can be diminished. This
provides the benefits of capability-based security while making it transparent to the CUDA
application – it is managed entirely by the interceptor.

For a region of device memory to be visible to RDMA (which is necessary for host-to-
device and device-to-host memory copies), it must be pinned using GPUDirect RDMA [45].
However, there is a limit to the maximum amount of memory that can be pinned at once.
To get around this, we can either dynamically pin and unpin memory as needed, or increase
the maximum amount of pinned memory. Dynamically pinning/unpinning memory was
seen as undesirable as this operation is fairly expensive, so we opted to use the NVIDIA
Display Mode Selector tool to increase the maximum amount of pinned memory [46]. This
has the side-effect of disabling graphical output, which is not needed for HPC applications
such as ours anyway. For future work in remote GPU access using FractOS, we consider
this configuration change to be essential for efficiently running real applications.

Host memory in CUDA can be allocated using cudaMallocHost, which allocates page-
locked memory and makes it accessible to the GPU. In normal CUDA applications, the
CUDA driver can accelerate calls to functions like cudaMemcpyAsync when using memory
allocated in this way, but this is not possible in our case since host and device memory reside
on different machines. Therefore, our interceptor for cudaMallocHost simply allocates
memory normally using malloc and registers it for use with RDMA (using FractOS APIs).

Llama.cpp (and many other CUDA applications) allocate large blocks of host and device
memory in pools, and then reference smaller regions within these blocks. Therefore, we end
up tracking a relatively small number of memory capabilities on the CUDA interceptor.
For this reason, we simply search through the capabilities linearly whenever we need a
memory region, rather than using a more elaborate data structure such as a binary tree.
In practice, the superior spatial locality of the C++ vector is likely to produce better
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performance than other data strictures except for extremely large numbers of capabilities,
which does not occur in normal operation.

A final point on memory allocation – llama.cpp uses a memory pool for both host and
device memory, and performs almost all of its allocations during the first inference request,
rarely needing to allocate more memory in subsequent requests. This is convenient for us,
since registering pages of memory for RDMA is a fairly expensive operation. The transient
increase in latency due to RDMA registration is not a major concern for us, since the
llama.cpp server can be configured to simply execute a warm-up run once the model has
been loaded.

5.2 Memory copy

Llama.cpp makes extensive use of the asynchronous memory copy API, cudaMemcpyAsync,
in line with its design to make as many operations asynchronous as possible. H2H (host-to-
host) and D2D (device-to-device) memory copies are straightforward to implement; H2H
is just done locally, and D2D simply requires performing an RPC to the CUDA service,
with the correct memory capabilities attached. However, H2D (host-to-device) and D2H
(device-to-host) are more complicated if CUDA semantics are to be obeyed.

Since host and device memory reside on different machines, it is necessary to perform
copies using RDMA (using the FractOS APIs). However, cudaMemcpyAsync still needs to
be treated as a CUDA task to respect stream semantics:

• When cudaMemcpyAsync is submitted to a CUDA stream, it should not begin exe-
cuting until all previous tasks on that stream have completed.

• All subsequent tasks submitted to that stream should not start executing until
cudaMemcpyAsync has completed.

Forcing the copy to only start once the previous tasks have completed is not difficult to
do using CUDA events – we create an event, record the contents of the stream at the
time of the memcpy, and block until ready. However, forcing subsequent tasks to wait is
non-trivial, and we considered several approaches:

1. Use a ’barrier kernel’ to act as a proxy for the actual RDMA-based memcpy operation.
The barrier kernel is so named as it blocks subsequent tasks from starting as long
as it is running. The lifetime of the barrier kernel (from waiting, to executing, to
finished) should closely follow that of the RDMA copy to avoid overhead.

2. Whenever we want to submit a task to a stream which is currently executing an
RDMA memcpy, instead add the task to a queue managed by the CUDA service.
When the copy completes, add all the tasks from that queue to the actual CUDA
stream.

3. Use cudaStreamWaitEvent or a similar API to block the stream until the RDMA
copy is finished. However, there is no straightforward way to arbitrarily trigger a
CUDA event in the public API; event completion must be linked to the completion
of some actual CUDA tasks. We considered this option to be unfeasible unless we
were to reverse-engineer CUDA events to find a way to forcefully alter their state.

Reviewing these options, the first was considered to be the simplest, while the second was
thought to likely to be the most efficient since it does not require launching an additional
kernel. However, we assumed that the overhead of a single kernel performing minimal
computation was likely to be quite low, so we opted for this solution, with the idea that
it could be improved if it turned out to be a performance bottleneck. The barrier kernel
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simply loops infinitely until a flag in device memory is set, which is done when the RDMA
copy is complete. The key steps of this solution are shown in fig. 5.1.

Figure 5.1: The key steps taken by our memcpy solution to ensure that CUDA stream
semantics are obeyed. cudaMemcpyAsync, shown in blue, is the entry point.

The major limitation of this design is that it is not asynchronous. The thread on the CUDA
service blocks until all previous tasks are complete (according to cudaEventSynchronize),
and synchronously waits on the RDMA copy to finish. Making this asynchronous would
require adding a new event loop to detect when a CUDA event has finished, which was not
feasible in the available time. While this seems like it might lead to significant performance
overheads, this is not what we found in practice – the Evaluation chapter shows this effect
and explains why it happens.

5.3 Kernel launch

On the CUDA service, we use the CUDA module APIs to load modules from .fatbin,
.cubin, or .ptx files. Kernels can then be loaded from modules by name (which is mangled
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and usually quite hard to read, due to llama.cpp’s extensive use of templated kernels).
When intercepting kernel launches from llama.cpp, the primary difficulty is in recovering
the name of the kernel. cudaLaunchKernel takes as an argument a pointer to an opaque
structure in host memory, which is used to call the function on device memory. However,
there exists no public CUDA API to obtain the name of the kernel from this pointer.
Therefore, we considered three options:

1. Instead of intercepting cudaLaunchKernel, intercept cuLaunchKernel (from the driver
API). This takes a CUfunction as an argument, whose name can be obtained with
cuKernelGetName.

2. Manually write interceptor functions for each unique kernel used by llama.cpp, then
forward the name and arguments to the kernel launch RPC.

3. Find some way to convert these opaque pointers into names, likely by partially
reverse-engineering CUDA kernel launch.

We deemed the first option to be unfeasible, as the CUDA driver API is not dynamically
linked with the CUDA runtime shared library, and therefore cannot be intercepted with
LD_PRELOAD. Techniques to get around this exist, such as dynamic binary instrumentation,
but we thought such techniques would be too time-consuming given the time available.
The third option was initially also considered unfeasible due to the closed-source nature of
CUDA. Therefore, we opted for the second option, manually writing interceptors for each
kernel.

Of course, this method was extremely laborious. Llama.cpp makes heavy use of templated
kernels (to offload computation from run-time to compile-time), which made reconstructing
the mangled names a complex task. The choice of batch size, input prompt length, and
model size also affects llama.cpp’s choice of kernels for some nodes in the computation
graph, requiring the system to be updated frequently. This system is also extremely brittle,
since different compiler configurations can produce different mangled names for kernels.
Hence, we returned to the third option, reverse-engineering kernel launch in CUDA.

We constructed a simple application which only launches a single kernel to gain insight
into CUDA. The relevant finding is that at the start of a CUDA program,
__cudaRegisterFunction is called. This undocumented function takes as arguments the
pointer to the opaque struct which is used by cudaLaunchKernel, as well as a string
containing the name of the kernel. Therefore, by intercepting this function when llama.cpp
starts and storing the relevant arguments in a map, it is possible to find the name of the
kernel when intercepting cudaLaunchKernel.

To actually launch these kernels on the CUDA service, the following steps are necessary:

• Compile llama.cpp with the nvcc flag –keep, which keeps all intermediate files gen-
erated by the CUDA compiler.

• Among these intermediates are .fatbin files containing all kernels defined in .cu
files. For llama.cpp, there are about 30 different .fatbin files. Put them somewhere
accessible to the llama.cpp server binary.

• The CUDA interceptor loads these files into memory, and then into modules on the
CUDA service (using RDMA to copy the data across).

• Since the llama.cpp server binary and the .fatbin files were produced during the
same compilation run, the mangled names will exactly match. The kernel names
recovered when intercepting cudaLaunchKernel can be sent to the CUDA service,
which loads and launches the correct kernel.
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While this process is not as simple as just running the CUDA program with no modifi-
cations, it is considerably more convenient than manually defining interceptors for each
kernel.

Unfortunately, it is not possible to know which module a given kernel resides in a priori;
therefore, our system searches every module. This is quite wasteful, so a key optimisation
here is to maintain a mapping from kernel names to RPC objects. This cache avoids the
need to search through modules for a given kernel more than once. In practice, most of the
kernels used by a particular LLM in llama.cpp will be the same between inference requests,
so simply warming up the model with a single request (which the llama.cpp server does by
default) is sufficient to obtain nearly all the functions needed.

5.4 Streams and events

Since streams and events are so intertwined, we consider them together. We use unique
IDs to make llama.cpp think it’s using handles to actual CUDA objects, whereas in fact
the CUDA interceptor simply uses them to index into a map to get the RPC objects.

In CUDA, there are default streams which are used by API functions like cudaMemcpy
when no stream is specified. APIs which take explicit streams can also take default stream
handles as arguments. There are two default streams in CUDA:

• The legacy default stream, which has value 0. Each device has its own legacy default
stream. A task on this stream will not start until all other streams on the device have
finished executing, and all other streams will wait while the legacy default stream is
executing. In other words, all streams synchronise with the legacy default stream on
a given device. This stream is not used by llama.cpp.

• The per-thread default stream, which has value 2. This stream is per-thread and
per-device, and unlike the legacy default stream, this stream does not synchronise
with other streams. This stream is used extensively in llama.cpp.

In line with our objective to focus on what is required by llama.cpp, we only implemented
the per-thread default stream. As mentioned previously, the llama.cpp server only every
issues CUDA calls from a single thread. Therefore, we opted to simplify the implementation
by assuming that there is only one per-thread default stream per device.

A minor complication is that default streams (both the legacy and per-thread ones) cannot
be uniquely identified by their handle (always 0 or 2 respectively). Thus, if a stream with
handle 2 is used, we assume it refers to the per-thread default stream of the current set
device, in line with the proper CUDA semantics. Adding true per-thread default streams
would require a small modification to associate these streams not just with device ordinals,
but also thread IDs, which can be easily obtained in C++.

Many of the stream and event APIs, such as cudaEventRecord and cudaStreamWaitEvent,
require obtaining the handles of other events or streams respectively. We implement this
functionality as follows:

• The ID of an object such as a stream or event is shared between the library and
server components of the CUDA service (i.e. it is the same locally and remotely).

• The RPCs exposed by the CUDA service library take stream and event objects as
arguments, from which the IDs can be obtained.

• These IDs are sent to the CUDA service server, which traverses the tree of objects
to find the correct one using the ID.
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5.5 CUBLAS API

Llama.cpp relies on GEMM (GEneral Matrix Multiplication) kernels, available through
the CUBLAS API. Because the CUBLAS kernels are not open-source, it is not possible
to simply compile them and then load them into modules to handle them like ordinary
CUDA kernel calls. Nor are compiled .cubin or .fatbin files publicly available. At the
time, we came to the conclusion that the only viable solution is to call CUBLAS API
functions directly on the CUDA service. This does somewhat violate disaggregation, since
we originally envisioned the server component of the CUDA service as having the bare
minimum functionality required to convert RPC calls to CUDA driver calls, like an RPC-
to-hardware translation layer. Using the CUBLAS APIs comes close to running application
logic on disaggregated hardware pools, which goes against the purpose of disaggregation.
However, given the time constraints, and with the view than this can be explored in future
work, we took this to be an acceptable limitation of our system.

Many of the GEMM functions take alpha and beta as arguments. These are pointers to
floats, which are used as scaling parameters in the matrix calculation. Importantly, they
can be pointers either to host or device memory - thanks to Unified Virtual Addressing,
the CUDA runtime/driver can figure out which one it is and access it accordingly. This
introduces complexity for our system, since host and device memory are not on the same
machine. Llama.cpp always places the parameters on host memory, so to simplify our
design we assumed that alpha and beta will always be pointers to host memory. Adding
support for alpha and beta in device memory is not particularly complex, but we felt it
was unnecessary for this project.

We also observed that before every GEMM function call, llama.cpp will call
cublasSetStream. This sets which stream all subsequent GEMM kernels will be submitted
to, since the GEMM APIs themselves do not take streams as arguments. Originally,
cublasSetStream was implemented as an RPC, but with this knowledge, we optimised
the design to store the stream in the interceptor state. Every RPC for a GEMM kernel
now contains the stream handle, and calls cublasSetStream on the CUDA service. This
effectively halves the number of RPCs used for the CUBLAS API.
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Chapter 6

Performance Modelling and
Optimisation

We can now predict the performance of running llama.cpp remotely on FractOS compared
to running it locally. Since the prefill and decode phases have such different characteristics,
we consider them separately. To allow us to perform these calculations, we make a few
assumptions based on rough measurements and observations of a run of llama.cpp, taking
1024 input tokens and generating 256 tokens:

• During the prefill phase, llama.cpp performs 3000 CUDA operations, with an average
of 50us per operation. Most of these operations are kernel launches.

• During the decode phase, llama.cpp performs 1000 CUDA operations per output
token, with an average of 8us per operation. Again, most of these operations are
kernel launches, but note how much lower the time per operation is compared to the
prefill phase. This is explained in the Evaluation chapter.

• The average RPC overhead per call to the CUDA service is 40us. This is based off
of actual measurements as well as results from previous experiments on the RPC
performance of FractOS, which estimated the overhead to be about 30us.

Assuming that one CUDA operation maps to one RPC, which is approximately true on
average, we calculate the prefill and decode times and show them in table 6.1. The prefill
time increases by 80%, but even this significant overhead is overshadowed by the 500%
increase in decode time. This is because the overhead per RPC is simply much more than
the time taken by a CUDA operation during the decode phase, especially since the decode
phase is compute-light.

Mode Prefill time (ms) Prefill overhead Decode time (ms) Decode overhead

Local 150 - 2048 -
FractOS 270 80% 12,288 500%

Table 6.1: Estimated prefill and decode times for local/remote llama.cpp. 1024 input
tokens, 256 output tokens. Model: Llama-2, 7B variant.

Taking potentially 6 times as long to process an inference request is unacceptable. The
issue is that the total RPC overhead is too high; therefore, candidate solutions either try
to reduce the overhead per RPC, or reduce the number of RPCs. We consider three main
approaches: fully-asynchronous RPCs, CUDA graphs, and batched CUDA operations.
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Fully-asynchronous RPCs – So far, we have exclusively been using synchronous RPCs,
meaning that the CUDA interceptor blocks until it receives a response from the CUDA
service acknowledging a successful operation. However, we could instead use asynchronous
RPCs, where we continue immediately after the interceptor sends the request to the Frac-
tOS channel. At some point in the future, if we require the results of the computation
(in llama.cpp’s case, this could be a device-to-host memcpy), we can wait on an grouped
future representing the completion of all asynchronous RPCs. This is similar in concept
to pipelining in protocols such as HTTP [47]. The main difficulty is ensuring in-order de-
livery, since this is not guaranteed by FractOS. Some additional mechanism like sequence
numbers would need to be implemented in the CUDA interceptor and service.

Furthermore, this solution does not ease the high amount of network congestion caused by
sending one RPC per CUDA operation. Though not the focus of our analysis, we believed
that reducing network congestion was also a desirable outcome.

Note that although RPCs can be synchronous or asynchronous, the actual CUDA API
calls are almost always asynchronous – for example, cuLaunchKernel returns once the
kernel has been enqueued on the device, not once the kernel itself has started or finished
executing.

CUDA graphs – Llama.cpp supports CUDA graphs, where once the graph has been
captured, it can be launched with a single CUDA call (cudaGraphLaunch). This is very
appealing since this allows us to generate a token with just a few RPCs instead of 1000,
but there are several complications:

• Llama.cpp does not just launch the exact same graph repeatedly. For every token,
the memory addresses of some nodes change, which would require implementing
additional APIs to patch graphs on the CUDA service.

• Llama.cpp rebuilds the graph from scratch every ∼ 20 tokens due to changes in the
dimensions of some tensors, so in practice the number of RPCs during the decode
phase would reduce by a factor of ∼ 20, rather than 1000. Such large spikes in
RPC count would also likely be perceptible to the user, leading to an awkward user
experience.

• Implementing CUDA graphs in this way would only affect the decode phase, since
the prefill phase must build the graph from scratch. Reusing the same graph between
inference requests is, in general, not possible, since llama.cpp dynamically chooses
some operations based on prompt length.

Batched CUDA operations – CUDA graphs have several advantages as detailed in the
Background chapter, but the one we are most interested in is the ability to replace many
CUDA API calls with one. The other features, such as CUDA driver optimisations, are
not as relevant. We considered if there is a way to reduce the number of explicit RPCs
without having to implement the full CUDA graph API.

Instead of immediately converting a captured CUDA call to an RPC, we instead save it in
some state that is stored by the library component of the CUDA service. Then, at some
point in the future, we package all saved CUDA calls into a single RPC, and execute it
synchronously. Unlike CUDA graphs, this solution does not require rebuilding the CUDA
graph every ∼ 20 tokens, and it improves the performance of both the prefill and decode
phases. The main remaining design consideration is when to start/stop capturing CUDA
calls.

We performed a similar analysis to before to estimate the performance of each option, with
the results shown in table 6.2. Note the following assumptions:
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• Asynchronous RPCs – Only 1 RPC per token needs to be synchronous, all oth-
ers can be asynchronous. An asynchronous RPC has an average overhead of 10us
(compared to 40us for a synchronous RPC).

• CUDA graphs – For 1/20 tokens, the graph is rebuilt from scratch, and for the other
19/20 tokens, ∼ 5 RPCs are required (for patching the graph with new addresses
and launching it).

• Batched RPCs – Generating a token requires one batched RPC, and ∼ 5 other
RPCs to synchronise the GPU and copy the results to host memory.

• CPU time, for example to iterate over the llama.cpp computation graph, is negligible.

Mode Prefill Decode
Time (ms) Overhead Time (ms) Overhead

Local 150 - 2048 -
Asynchronous RPCs 180 20% 4608 125%
CUDA graphs 270 80% 2749 34%
Batched RPCs 150 0% 2109 3%

Table 6.2: Estimated prefill and decode times for each of the candidate RPC optimisations,
compared to the local baseline. 1024 input tokens, 256 output tokens. Model: Llama-2,
7B variant.

Evidently, batching RPCs is the most promising optimisation, achieving performance that
is only slightly worse than the local baseline.

6.1 Implementing batched RPCs

Deciding when to start and stop capturing CUDA operations was the main design decision.
On the one hand, it is desirable to maximise the number of operations that are captured
at once, to minimise the number of RPCs. On the other hand, lazily executing CUDA
operations can break the semantics of programs if implemented incorrectly. For example, if
a synchronous device-to-host memory copy is not executed immediately, the host program
may access host memory with the expectation that it is filled with the results of some
CUDA computation. Unified Memory significantly complicates this, since it performs
implicit host-device memory copies to make data available whenever is it needed. Although
we did not enable Unified Memory in llama.cpp for this project, we kept it in mind when
making decision decisions for the benefit for future work.

Additionally, CUDA API calls can return both synchronous and asynchronous errors. Er-
rors that should only be returned synchronously pose a problem for batched RPCs, since
these errors would be delayed. Fortunately, this is not a problem for llama.cpp for two
reasons:

1. Llama.cpp has a very straightforward error handling strategy: if a CUDA operation
returns anything other than a success, the program crashes. Therefore, even if an
error is delayed, the program will crash eventually.

2. During token generation, llama.cpp doesn’t rely on synchronous errors – all opera-
tions are asynchronous apart from calls to cudaStreamSynchronize or
cudaEventSynchronize. Therefore, if we construct batches of RPCs along these
boundaries, the semantics remain the same.
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For this project, a strategy of simply batching all CUDA operations until a call to
cudaStreamSynchronize or cudaEventSynchronize is made would maximise the number
of operations that we could fit in each batch, thus minimising the overall overhead. How-
ever, this doesn’t work for general CUDA programs due to features like Unified Memory.
We sought a more general solution.

A key insight is that we can use the CUDA graph API to batch operations with proper
semantics. When capturing on a stream, the CUDA operations are not actually executed,
but instead just stored in the graph. Therefore, by batching all RPCs between calls to
cudaStreamBeginCapture and cudaStreamEndCapture, we can maintain the same seman-
tics as the original CUDA program. We implemented APIs in the library component of
the CUDA service to support this feature. A local Graph object can store a sequence of
CUDA operations, which can be serialised and sent to the CUDA server to be ’replayed’.
We added support for kernel launch, device-to-device memcpy copy, and several CUBLAS
GEMM APIs – these are the only CUDA APIs that are captured by llama.cpp.

We decided to hook into cudaGraphInstantiate to send the batched RPC to be replayed
on the CUDA server. In principle, it makes no difference whether we use this API or one
of cudaStreamEndCapture/cudaGraphLaunch for this purpose. It is worth noting that we
are only hacking into the CUDA graph API to implement batching with correct semantics
– at no point do we use the actual CUDA graph functionality itself (hence, we disable all
other CUDA graph APIs such as those used to patch executable graphs).

Fortunately, llama.cpp uses CUDA graphs with relatively coarse granularity. During the
prefill phase, one CUDA graph is used per batch per device, and during the decode phase,
there is one graph per device. The graphs capture the vast majority of CUDA API calls,
excluding APIs like stream/event synchronisation.

A minor point on serialisation is that we do not include the serialised sequence directly in
the RPC that is called when we hook into cudaGraphInstantiate. Instead, we include
a memory capability, and use this to copy over the serialised data via RDMA. This is
because the sequences can become quite large (typically 100KB for Llama 2 7B), making
their direct inclusion in RPCs unwieldy. Our serialisation strategy is to simply collect
all the arguments for each CUDA operation into packed structs, then copy these structs
directly into a contiguous memory region. We leave optimisation of this system, such as a
more space-efficient serialisation algorithm, to future work.

We also added support for an option where instead of directly replaying the CUDA oper-
ations on the server, we capture them into a CUDA graph, instantiate it, launch it, and
then destroy it. These ’ephemeral graphs’ are the most naive way to use the CUDA graph
API on the server, and represent a first step towards a more comprehensive system, which
would allow patching executable graphs rather than rebuilding them from scratch.
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Chapter 7

Evaluation

We measure the performance of the llama.cpp server in two scenarios: a single inference
request, where we are interested in the properties of the prefill and decode phases; and
a realistic workload with multiple clients, where we are interested in metrics such as the
average TTFT (Time to First Token) and TPS (Tokens Per Second). For the single-request
case, we are also interested in an analysis of which operations are taking the most time.
To this end, we integrate profiling into our CUDA interceptor.

Both these scenarios rely on a benchmark program which sends requests to the llama.cpp
server. For the single-request scenario, we created our own benchmark, whereas for the
multi-client scenario, we use a benchmark provided in the llama.cpp repository.

7.1 Experiment design

Key aspects of our experimental setup are as follows.

Model – We use the Llama 2 family of models, which come in three sizes: 7B, 13B, and
70B (referring to the number of parameters in billions). Llama models are among the most
popular open-weights models, so we considered them to be a representative example to test
our system on. At the start of the project, the most recent release was Llama 3. However,
we chose to use the Llama 2 family instead as it has almost the exact same architecture,
while having a much more manageable parameter range – Llama 3 comes in 8B, 70B, and
400B sizes, the last of which is extremely unwieldy to use, even with quantization.

Hardware – All machines used in all experiments are identical. Each machine has a 24-core
AMD EPYC 7402P CPU and 4 NVIDIA RTX A6000 GPUs, each with 48GB of VRAM.
The GPUs are connected by NVLink, minimising the overhead of multi-GPU parallelism.
The Infiniband connections between the machines have a bandwidth of approximately
10GB/s.

Llama.cpp options – For this project, we disable Unified Memory, as it significantly
complicates host-device memory copies. When running without FractOS (either locally
or using the RPC backend), we also disable CUDA graphs. This is because when we run
llama.cpp with FractOS, we only hook into the CUDA graph API to enable batched RPCs,
rather than actually using underlying CUDA graphs implementation. We do not benefit
from things like driver optimisations that are normally possible with CUDA graphs. Thus,
leaving CUDA graphs enabled when running locally or using the RPC backend would be
an unfair comparison.
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7.2 Configurations

Our experiments run in one of three broad configurations:

• Local – All processes run on a single GPU node.

• RPC – The llama.cpp RPC backend runs on a GPU node, while the llama.cpp server
and benchmark run on CPU node.

• FractOS – Similar to the RPC configuration, except we run the CUDA service
instead of the RPC backend on a GPU node. Additionally, we run one FractOS
controller on each node, as well a few other processes required by FractOS.

The local, RPC, and FractOS configurations are shown in fig. 7.1, fig. 7.2, and fig. 7.3
respectively. Our contributions are highlighted in turquoise. The purpose of the llama.cpp
RPC backend is primarily as an additional baseline to compare our system against. We
describe the main measures we took to ensure a fair evaluation.

Figure 7.1: High-level view of local experiments.

Figure 7.2: High-level view of llama.cpp RPC backend experiments.

Same hardware – Although we refer to ’GPU node’ and ’CPU node’ separately, these
two machines are actually identical. However, we disable the GPUs on one of them using
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Figure 7.3: High-level view of FractOS experiments. Both FractOS controllers communi-
cate with the FractOS manager and GNS, but for clarity these data transfers are omitted.
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CUDA_VISIBLE_DEVICES to obtain an effectively CPU-only node. We do this to ensure
that the processor and other non-GPU hardware is the same for both local and remote
llama.cpp, to ensure a fair comparison.

Core isolation – We use numactl to ensure each process runs on a set of CPU cores that
is disjoint from all others, to prevent scheduling conflicts and improve repeatability.

Exclusive access – We ran our experiments at times when the machines were not being
used by anyone else, to avoid any interference from other processes as far as is reasonable.

7.3 Latency benchmark

The purpose of the latency benchmark is to obtain clear insight into the performance of the
prefill and decode phases, including an understanding of which operations are bottlenecking
the system. The reason we consider the prefill and decode phases separately is because
they have such different characteristics, that profiling them together would lose significant
information.

We use the cpr framework in C++ [48] to send one request at a time to the llama.cpp
server. We attach callbacks to these requests, which allow us to record the time when the
first token is received (assuming that the llama.cpp server is being run in streaming mode,
sending each token as it is generated), and the last token. From these we can calculate the
prefill and decode times separately. We also implemented a functionality to send multiple
requests concurrently, but this was superseded by the separate load benchmark that is
provided by llama.cpp.

Input sequence length – To control the prompt length in tokens, we tokenize the chosen
prompt using one of the llama.cpp server endpoints, then select as many tokens as desired,
discarding the rest.

Output sequence length – By default, LLMs stop generating tokens once they predict
a special ’end of sequence’ token. This behaviour is desirable in normal use cases, since
responses should not be unbounded. However, this is undesirable for our experiments, since
we want to strictly control the output token sequence length between runs. Therefore, we
use the –ignore-eos option to force the model to continue generating even if it were to
predict an eos (end of sequence) token as the most likely.

Slot reuse – One of the main optimisations available in the llama.cpp server is slot reuse.
This is a mechanism where the server will search for a slot whose last processed prompt
shared the longest common prefix with the current prompt. Because LLMs use masked
self-attention, where a token’s embedding is affected only by previous and not subsequent
tokens, if two prompts share a common prefix then their KV caches will also share a
common prefix. Therefore, the server can keep a prefix of the KV cache and discard the
rest. However, this behaviour is undesirable for evaluation, since we want each request to
be fully independent. Therefore, we disable this feature using cache_prompt=false.

7.3.1 Detailed profiling

To obtain insight into the inner workings of our system, we considered it essential to
implement profiling for each CUDA operation and FractOS RPC.

For the machine actually executing the CUDA operations, this can be done using Nsight
Systems, NVIDIA’s profiling solution. This gives us metrics such as the average and
standard deviation of each CUDA API used by the program, as well as breakdowns of
all the kernels launched. Importantly, most of the CUDA APIs used by llama.cpp are
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asynchronous, so Nsight Systems records the time to set up an operation and submit it
to a queue on the GPU, not the time to complete the task itself. On the other hand,
kernel-level breakdowns do show us how much time a kernel actually spent executing on
the GPU. Breakdowns are also available for memory transfers, but these are not as useful
to us as we use RDMA in FractOS, which is not visible to this profiler.

However, Nsight Systems collects a huge amount of data, as one of its main uses is to show
a graphical timeline of CUDA operations (which we do not use). Due to this limitation,
we only run experiments with Nsight Systems enabled for a single inference request. We
then extrapolate the breakdown from the profiler-enabled run to the profiler-disabled run,
giving us insight into bottlenecks while providing accurate per-request times.

When running llama.cpp with FractOS, we also required profiling on the CUDA interceptor,
so we implemented a basic system for recording the accumulated time and count of each
operation. It is not straightforward to compare the profiler breakdowns between local and
FractOS-based llama.cpp for several reasons:

• Local llama.cpp uses the CUDA runtime API, whereas the CUDA service on FractOS
uses the driver API (except for CUBLAS calls).

• The implementation of memory copy on the CUDA service involves launching a
barrier kernel and waiting on events, which contributes to the total times for
cuLaunchKernel and cuEventSynchronize, while not calling cuMemcpyHtoDAsync or
cuMemcpyDtoHAsync at all.

• In practice, running llama.cpp remotely causes some CUDA operations to ’consume’
others - this is explained in detail later.

Since our latency benchmark performs a few warmup runs to achieve a steady state first,
we wanted a way to control when to start and stop profiling. This can be done with
the CUDA profiler APIs. We hacked two of the endpoints of the llama.cpp server that
we do not use (GET /lora-adapters and POST /lora-adapters) and repurposed them
to start/stop profiling respectively. When running with FractOS, the CUDA interceptor
captures this call, starts its own profiling, and then forwards the call to the CUDA service
so that it can start profiling with Nsight Systems.

7.3.2 Prefill phase

We start with an analysis of the prefill phase, where we request llama.cpp to generate a
single token.

Prompt length

fig. 7.4 shows how prefill time varies with prompt length. The performance of FractOS
suffers for short contexts, with an overhead of 25% for 200 input tokens (without batching).
This is due to the network overhead imposed by the minimum FractOS RPCs needed to
generate a token, which is not dependent on context length. However, FractOS performs
surprisingly well for larger contexts, with an overhead of as little as 3% without batching.
Interestingly, enabling batching actually degrades performance for all prompt lengths. It
is clear that the FractOS overhead is somehow ’absorbing’ a portion of the time that is
normally spent on CUDA API calls.

To gain insight into this behaviour, we can look at the detailed profiler breakdown for
FractOS without batching in fig. 7.5. We see that both the asynchronous APIs (kernel
launch, memset, event record, etc.) as well as the only synchronous API, stream synchro-
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Figure 7.4: Effect of prompt length on prefill time. Llama 2 7B on 1 GPU.

nize, take significantly longer when running locally. We provide separate explanations for
these phenomena.

Stream synchronization – Because FractOS introduces significant overhead when batch-
ing is disabled, the GPU is able to make significant progress on its tasks while we are
waiting for RPCs to complete. In other words, we get implicit parallelism between RPC
calls and GPU computation. At the end of each token generation step, when we call
cudaStreamSynchronize to wait for all the tasks to complete, we do not have to wait as
long since significant progress has already been made.

Asynchronous APIs – When calling an asynchronous API such as cudaLaunchKernel,
the CPU will block until space is available on the GPU task queue. Because the prefill phase
is compute-heavy, this happens often when running locally as the queue gets backed-up with
long-running kernels, causing the average time per kernel launch to increase. However, this
isn’t an issue when running on FractOS, because the time spent waiting for RPCs provides
a ’buffer’ for the queue to make progress, reducing or eliminating the time that the CPU
has to block for.

The fact that FractOS performs worse when batching is enabled is thus due to its inability
to overlap FractOS RPCs and GPU computation as effectively. Nonetheless, it should be
noted that the penalty that batching imposes is very minor.

It should be noted that when asynchronous APIs block in this way, it is actually often
seen as a good sign, as it indicates high GPU utilisation [27][28]. Running llama.cpp on
FractOS does not seem to decrease utilization, since if it did, the execution time would
be noticeably longer for the compute-bound prefill phase. Instead, it simply spaces out
the API calls (mostly kernel launches) at no cost to execution time. Of course, this is
dependent on the specific hardware used, and in principle a fast enough GPU would not
exhibit this effect, making the effective RPC overhead higher.

Number of GPUs

Next, we examine the effect of the number of GPUs used, fixing the prompt length at
1000 input tokens (the equivalent of ∼ 800 words, or a few paragraphs), to represent a
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Figure 7.5: Profiler breakdown comparing FractOS (no batching) to local llama.cpp. Prefill
phase only, 1150 input tokens. Llama 2 7B on 1 GPU.

moderately-sized workload. There are a few limitations with experiments involving multi-
ple GPUs:

• A single llama.cpp RPC server can only use a single GPU. To use multiple GPUs,
multiple servers need to be launched, which we did not implement in this project.
Hence, we leave out measurements of the llama.cpp RPC backend from our multi-
GPU experiments.

• In llama.cpp, CUDA graphs and tensor parallelism are incompatible due to the com-
plexity of the memory buffers used. We considered it unfeasible to add support for
this in time, so instead we exclusively use pipeline parallelism for multiple GPUs.

The results are shown in fig. 7.6. We see that, contrary to our expectations, increasing the
number of GPUs does reduce the prefill time. While not a particularly well-documented
phenomenon, we hypothesise that splitting the model across multiple GPUs might reduce
memory pressure. The overhead of copying tensors between GPUs is minimal as the GPUs
all have fast NVLink interconnects.

FractOS (without batching) – The prefill time reduction associated with multiple GPUs
seems to plateau for more than one GPU. The CUDA API time is already very small, and
it appears that it cannot be reduced any further by overlapping GPU work with RPC
overhead. Thus, the total time remains approximately constant.

FractOS (with batching) – We can see a slight increase in absolute FractOS overhead
as the number of GPUs increases. This happens because we only batch CUDA calls that
would normally be captured in a CUDA graph (between cudaStreamBeginCapture and
cudaStreamEndCapture). Using multiple GPUs involves additional CUDA API calls for
coordinating work that are excluded from this capture, such as cudaEventRecord and
cudaStreamWaitEvent, which introduces additional RPC overhead. However, this effect
appears to be quite minimal, and the increased overhead appears to absorb some of the
CUDA API time, keeping the total prefill time close to local execution.
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Figure 7.6: Effect of GPU count on prefill time. 1000 input tokens, Llama 2 7B.

Model size

Finally, we consider the effect of model size, comparing results for the Llama 2 7B, 13B,
and 70B models. fig. 7.7 shows that the time spent on CUDA API calls increases with
model size, which is as we would expect. However, we observe that the increase in FractOS
overhead is sub-linear with respect to the increase in CUDA API time, even if batching is
disabled.

This is because model size affects two things: the size of the weight tensors, and the number
of layers. As more layers are added, the FractOS RPC overhead increases as the size of
the serialised CUDA sequences increases. However, the size of the weight tensors does not
change the number of CUDA calls – llama.cpp will dynamically choose kernels, or change
the grid/block dimension, based on tensor size, but this does not increase the FractOS
overhead.

Summary

• The compute-heavy nature of the prefill phase means that FractOS overhead is effec-
tively overlapped with GPU work, making FractOS without batching perform quite
well (3% overhead for 4000 input tokens).

• Batching slightly degrades performance as we lose some of this parallelism, though
this effect is quite small.

• FractOS performance suffers for small contexts due to RPCs that are always made
regardless of context length. Although high in relative terms, this overhead is small
in absolute terms (∼ 30ms).

• FractOS overhead increases slightly with GPU count due to RPCs used to synchronise
GPUs. This overhead can absorb CUDA API time to prevent increasing prefill time,
to an extent.

• Relative FractOS overhead is smaller for larger models (just 1% overhead for the 70B
model, with batching enabled).
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Figure 7.7: Effect of model size on prefill time. 1000 input tokens. We use 2 GPUs to
ensure the 70B model can fit and leave adequate space for the KV cache, and then replicate
this for the 7B and 13B models for a fair comparison.

7.3.3 Decode phase

In order to profile only the decode phase, we repeat the same experiments with n ̸= 1
output tokens and 1 output token, then find the difference. Essentially, we discard the
contribution of the prefill phase.

Output sequence length

We start by observing the effect of output sequence length on decode time. fig. 7.8 shows
that the performance of FractOS without batching significantly degrades in the decode
phase, whereas FractOS with batching performs much better, with an overhead of just
14% that is constant with output sequence length.

To identify where exactly the FractOS overhead is coming from, we show detailed profiler
breakdowns for FractOS with and without batching, in fig. 7.9a and fig. 7.9b respectively.
When batching is disabled, the RPC overhead is dominated by calls to cudaLaunchKernel.
This is not surprising, since a single token requires ∼ 1000 kernel launches just for the
small 7B model. Having to execute this many RPCs sequentially is very time-consuming,
as shown in our calculations in the Optimisation chapter. The breakdown for FractOS
with batching reveals some interesting insights.

Shifting synchronization – When running locally, stream synchronization takes up the
majority of the CUDA API time. However, for FractOS with batching, we instead see
this role filled by event synchronization, even though we only use a single GPU (and thus
llama.cpp does not call cudaEventSynchronize during the decode phase). In fact, this
event synchronization is caused by our implementation of memcpy, which uses an event
to ensure the memcpy does not start until all previous tasks in the target stream have
completed. This reveals an interesting property of our system, which is that we shift
synchronization from one API to another, almost for free.

More concretely, recall the llama.cpp token generation process – it consists of many asyn-
chronous operations, followed by an asynchronous device-to-host memcpy, followed by
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Figure 7.8: Effect of output sequence length on decode time. 1000 input tokens, Llama 2
7B, 1 GPU.

stream synchronization. By making that final memcpy synchronous, we move the burden
of synchronization away from the final stream synchronization call (which is why it doesn’t
appear on our breakdown for FractOS with batching – it is negligible). We still obtain
most of the benefits of asynchronicity, since the ∼ 1000 or so kernel launches for each token
are still asynchronous.

Batched RPC overhead – We can see that cudaGraphInstantiate, which we use to
replay the stored CUDA sequence on the CUDA service, takes up noticeably more time
than all of the CUDA API calls combined. As mentioned, this system is not well-optimised,
and we give examples of how this could be done in the Future Work chapter.

Number of GPUs

In fig. 7.10, we can more clearly see an effect that was present in the prefill phase, which
is that increasing the number of GPUs increases the RPC overhead. When batching is
enabled, the total decode time is not affected because some of the CUDA API time is
absorbed into RPC time. However, there is a limit to this, which is what we observe for
FractOS without batching – the RPC overhead directly contributes to the decode time as
we reach as lower bound on the CUDA API time. Unfortunately, we are unable to test
this effect for more GPUs as we can at most use all 4 GPUs on a single machine.

The reason why the number of RPCs increases with GPU count is because the CUDA calls
for orchestrating work between GPUs are not captured in the graph. However, batching
only those operations that would normally be captured in a CUDA graph is a matter
of choice, and we could extend our system to implicitly batch operations across larger
timescales. The main consideration is to ensure that executing CUDA operations lazily
does not break the program.

For llama.cpp, batching cudaEventRecord, cudaStreamWaitEvent, and
cudaMemcpyPeerAsync would not break the semantics (as long as they are executed in-
order), and these are the only additional APIs used for cross-GPU synchronisation. If
we were to start implicit batching when any CUDA operation other than a host-to-device
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or device-to-host memcpy is called, and stop batching when a device-to-host memcpy is
called, then we should be able to capture almost all of the operations used by llama.cpp
while ensuring its correctness. Of course, this optimisation is specific to llama.cpp, which
is why we opted for a more general solution instead, but we believe application-specific
optimisations like this are still worth investigating in future work.

Model size

We conclude our analysis of the decode phase by comparing different model sizes in fig. 7.11.
We see that increasing model size reduces the relative FractOS overhead, as this overhead
increases at a slower rate than the CUDA API time. For the 70B model, FractOS with
batching enabled has just 2% overhead compared to running llama.cpp locally, an overhead
which is imperceptible in ordinary use.

It is instructive to compare the sources of the overheads for small and large models –
we compare the 7B and 70B models. We show the profiler breakdowns in fig. 7.12a and
fig. 7.12b. Compared to the smaller model, the overheads of the larger model are much
more focused around just two operations: replaying the captured CUDA operations on
the CUDA service, and performing device-to-host memcpy. This is because model size
influences these two operations more than any others:

• Larger models perform more kernel launches, increasing the size of the CUDA se-
quence which must be serialized and sent across the network.

• Llama 2 70B has an embedding length of 8192 (this is the dimension of the vector
used to embed a token), compared to 4096 for Llama 2 7B. The size of the data
transfer when copying logits from device to host for each token is therefore larger.

For the 70B model, we can see that the time spent on memory copies between host and
device, from the perspective of the interceptor, almost exactly matches the time spent on
cudaStreamSynchronize for local llama.cpp. This implies that there is almost no RPC
overhead for this operation – it is dominated by the (useful) synchronisation time. By
contrast, there is a noticable overhead associated with cudaGraphInstantiate, which is
the API we use to replay the CUDA operations. So as the model size increases, the
dominant overhead becomes that of replaying CUDA operations, making this the main
target for optimisation in future work.

Summary

• With batching enabled, FractOS has a decode time overhead of 14% (single-GPU
case), constant with respect to output sequence length.

• FractOS without batching performs significantly worse – batching is a key optimisa-
tion to make remote CUDA feasible for real workloads.

• Increasing GPU count increases FractOS overhead, more so than in the prefill phase.
For a larger number of GPUs, we would expect this to harm the decode time, though
more work is needed to verify this.

• The relative FractOS overhead decreases with increasing model size, from 12% for
the 7B model to just 2% for the 70B model (in both cases, using 2 GPUs).
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7.4 Load benchmark

To simulate a realistic workload, we use the provided llama.cpp server benchmark, built
on top of the k6 framework [49]. This simulates a fixed number of clients, each of which
sends an inference request, waits for a response, sleeps for a short delay, and then repeats
the process. The total number of requests sent by all clients is fixed – prompts are divided
among the clients via work stealing.

To allow the llama.cpp server to handle concurrent requests, we set the number of slots to
4. This allows the server to manage 4 KV caches and batch 4 requests at once according
to continuous batching. The dataset we use to source prompts is ShareGPT, which is a
collection of real conversations shared by ChatGPT users. These conversations vary in
length and complexity, although we discard conversations that are ’too short’ or ’too long’
according to the default benchmark parameters in [18].

An important note is that while we are able to run the 7B and 13B models on a single
GPU, and therefore include measurements of the llama.cpp RPC backend, this is not the
case for the 70B model. Therefore, we use 2 GPUs for the 70B model and exclude the
RPC backend.

7.4.1 TTFT

The average TTFT results are shown in fig. 7.13. As expected, we observe a significant
increase in TTFT for more than 4 clients – if there are more concurrent requests than
slots, then some requests will be forced to wait until other requests complete, extending
some TTFT values to the full decode time. This is particularly bad for FractOS without
batching, since it suffers from much higher decode overheads than prefill overheads. For
FractOS with batching, we observe performance only slightly worse than the local baseline,
and this overhead does not appear to increase under high load.

As expected, these overheads also decrease with model size, to the point where FractOS
without batching has practically the same performance as our local baseline.

7.4.2 TPS

The average TPS results are shown in fig. 7.14. As expected, FractOS with batching
performs significantly better than both the llama.cpp RPC backend, and FractOS without
batching. For the single-client case, FractOS with batching gives similar overheads as our
decode phase latency measurements. We observe significant improvements for the larger
model sizes, consistent with all our other results so far. Notably, we do not observe any
significant performance degradation as the number of clients increases.

Fundamentally, the reason why the number of clients does not degrade the performance of
llama.cpp with FractOS is because having multiple clients only affects batching (specifically,
continuous batching). From the perspective of the CUDA interceptor, the work it performs
is essentially the same, just that the parameters of the RPCs would vary to accommodate
these different batch sizes.

7.5 Usability

We conclude our evaluation with a discussion of the ease-of-use of our system. Assuming
that FractOS has already been set up, and that batching is enabled, the following steps
are needed to make llama.cpp work with FractOS:
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• Disable Unified Memory and remove the CUDA graph API functions that are used
to patch the graph. This means that the CUDA graph will be rebuilt from scratch
for every token.

• Compile llama.cpp with the CUDA backend, modifying the nvcc command to out-
put the intermediate files. Move the .fatbin files to a directory accessible to the
llama.cpp server binary.

• Run the llama.cpp server with LD_PRELOAD=<location of CUDA interceptor shared
library>.

Compared to previous solutions in this space such as rCUDA, our system requires very little
additional work to transparently replace local CUDA calls with remote ones. Since our
CUDA interceptor does not support the full CUDA API, it cannot currently run arbitrary
CUDA programs. However, if support were to be added in the future, then the procedure
above would apply to general CUDA applications as well.
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(a) With batching.

(b) Without batching.

Figure 7.9: Profiler breakdowns comparing FractOS with local execution. 1000 input
tokens, 200 output tokens, Llama 2 7B, 1 GPU.
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Figure 7.10: Effect of the number of GPUs on decode time. 1000 input tokens, 200 output
tokens, Llama 2 7B.

Figure 7.11: Effect of model size on decode time. 1000 input tokens, 200 output tokens.
Like in the analysis for the prefill phase, we use 2 GPUs for all models.
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(a) 7B model.

(b) 70B model.

Figure 7.12: Profiler breakdown comparing FractOS and local llama.cpp for different model
sizes. 1000 input tokens, 200 output tokens, 2 GPUs.
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(a) 7B.

(b) 13B.

(c) 70B.

Figure 7.13: Average TTFT of different llama.cpp configurations across different numbers
of clients. Comparison between model size. 100 requests total.
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(a) 7B.

(b) 13B.

(c) 70B.

Figure 7.14: Average TPS of different llama.cpp configurations across different numbers of
clients. Comparison between model size. 100 requests total.
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Chapter 8

Future Work

Extending a CUDA program to efficiently use remote GPUs in a disaggregated environ-
ment is a project with enormous scope, and there were many features we were unable to
implement in time. For future work, we consider both general improvements, as well as
improvements specifically targetting llama.cpp.

Asynchronous host-device memory copy – The current system only supports syn-
chronous host-device memory copies. As shown in the Evaluation chapter, this does not
lead to significant overhead for llama.cpp, but this could definitely be the case for arbi-
trary CUDA programs. Additionally, we use a barrier kernel to prevent subsequent CUDA
tasks from starting, which does incur some overhead. We provide the high-level design of
a fully-asynchronous solution that does not use a barrier kernel:

• A CUDA event loop runs in a separate thread, allowing callbacks to be executed
when a CUDA event is detected to have finished its recorded work.

• When a host-device memcpy is called, register a callback in the CUDA event loop
so that the copy only starts once all existing work in the target stream has finished.
Additionally, set a flag for the target stream to show that a host-device memcpy is
present (even though it hasn’t started yet).

• While the flag is set, all subsequent CUDA tasks targetting that stream will instead
to enqueued to a data structure managed by the CUDA service.

• Since the RDMA copy is a FractOS operation returning a future, it can be chained
into another callback. In this callback, called only when the copy has finished, unset
the flag from earlier and submit all tasks to the actual CUDA stream.

This solution makes the two main ’waiting’ parts of the copy, waiting for previous tasks and
waiting for the copy itself, fully asynchronous, while preserving CUDA stream semantics.
The most complex part of this solution is designing an efficient event loop for detecting
CUDA events.

Additional CUDA features – We disabled two optional CUDA features used by llama.cpp
to keep the scope of this project manageable: Unified Memory and APIs to patch CUDA
graphs. Implementing these would also benefit a wide class of CUDA applications.

CUDA driver interception – Our CUDA interceptor targets the runtime API because
of the difficulty of using LD_PRELOAD with the CUDA driver, which is not dynamically
linked to the CUDA runtime shared library. Future work should consider how this could
be achieved, since intercepting the CUDA driver API is more general and can support
arbitrary CUDA applications, regardless of which API they use.
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Additionally, intercepting the underlying CUDA Driver API calls used by CUBLAS on the
client would avoid the need to call CUBLAS on the CUDA service. The CUDA service
exclusively uses the driver API, with the exception of CUBLAS API calls. In general, it
is ill-advised to mix runtime and driver API calls, so if the underlying CUDA driver calls
could be intercepted on the client, this could be avoided. This would also be more in-line
with disaggregation, since we want to restrict the CUDA service to the absolute minimum
functionality required to translate RPCs to hardware commands.

Optimised RPC batching – Our system for batching RPC requests in FractOS could
be significantly optimised. A few examples of such optimisations:

• Re-use the memory capability that is used to hold the serialised CUDA sequence,
instead of re-creating it every time. For a single inference request, the total size of
the sequence changes very rarely, so a cache storing memory capabilities of different
sizes would likely be effective.

• Use a more efficient serialisation method. Currently, we naively pack arguments into
structs and then pack these into a contiguous memory region. Finding a way to
compress the data transfer could reduce the overall time.

• In practice, only small parts of the CUDA sequence change from token to token.
Therefore, it may be more efficient to only transfer the delta between the previous
and current sequences, and rely on the CUDA server to update its stored sequence.

In the case of llama.cpp specifically, we discussed how it should be possible to perform
implicit batching over a longer time horizon. It is worth exploring how effective this is,
whether it does indeed maintain the correctness of llama.cpp, and how this idea could be
extended to other CUDA programs.

Better evaluation – Our evaluation could be improved in the following ways:

• Test more open-weights models, such as PaLM, Gemma, and Mistral.

• Avoid using Nsight Systems due to the large amount of data it produces, and instead
implement a custom CUDA API profiling system using LD_PRELOAD.

• Include the llama.cpp RPC backend in the multi-GPU evaluation by launching one
RPC server per GPU. Although the RPC backend is already established to perform
significantly worse than both local execution and FractOS (with batching), it would
be good to check experimentally if this holds for multiple GPUs.

Multiple remote GPU nodes – Our system currently only supports connecting to a
single machine to use remote GPUs, which is quite limiting. A better system would allow
the client to use remote GPUs from multiple machines by connecting to multiple services
through something like a router. From there, FractOS’s ability to coordinate RDMA
transfers between devices on different machines without going through the main CPU could
be used. This would bring our system closer to existing state-of-the-art distributed LLM
inference solutions such as vLLM, allowing for a better comparison between disaggregated
and non-disaggregated systems.

Streaming model weights directly to VRAM – Currently, we load model weights
from storage into RAM, and then into VRAM. Leveraging FractOS’s capabilities, we could
instead co-ordinate an RDMA transfer from a remote storage node to the remote GPU
node, which is more in line with disaggregation. While this wouldn’t affect request metrics
like prefill or decode time, it would allow llama.cpp to be spun up more quickly.
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Chapter 9

Conclusion

We successfully demonstrate that efficient remote CUDA execution for LLM inference is
achievable in disaggregated environments. Through the design and implementation of a
comprehensive system built on FractOS, we have shown that the performance gap between
local and remote GPU execution can be minimized to practically imperceptible levels when
appropriate optimisations are applied.

Our CUDA interceptor provides a transparent interface that requires minimal modifications
to existing applications, addressing one of the key limitations of previous approaches like
rCUDA. Batched RPC operations are a key optimisation that fundamentally changes the
performance characteristics of remote GPU execution, transforming the overhead from
prohibitive to manageable. This optimisation proves particularly effective for the decode
phase, where the lightweight computational requirements would otherwise be dominated
by RPC overhead.

Our evaluation reveals several important insights. We found that the prefill phase performs
almost as well remotely as locally, even without the batching optimisation. This is because
FractOS RPCs can very effectively be overlapped with GPU work during the compute-
heavy prefill phase. For the decode phase, our batched RPC optimisation achieves overhead
as low as 7% compared to local execution for the small 7B model, demonstrating that
disaggregated GPU execution is practical for LLM inference.

Furthermore, we do not observe any degradation in multi-client performance for the 7B
and 13B models. For the 70B model, there is a slight increase in TPS degradation, from
2% to 5%, but larger experiments are needed to validate this.

The scalability characteristics of our system are favourable. Performance improves with
model size, as the computational work grows faster than the communication overhead.
For the Llama 2 70B model, our system has overheads of 1% and 2% for the prefill and
decode phases respectively, suggesting that disaggregated approaches may become even
more attractive as models continue to grow in size. However, more work is needed on the
performance of our system for large numbers of GPUs (we were limited to four).

Beyond the immediate technical contributions, this work validates the broader vision of
disaggregated computing for AI workloads. By demonstrating that complex, performance-
critical applications like LLM inference can operate efficiently in disaggregated environ-
ments, we provide evidence that datacenter operators could realize significant improve-
ments in resource utilization without sacrificing application performance. The capability-
based security model of FractOS adds an additional layer of value, providing strong isola-
tion guarantees that are essential in multi-tenant cloud environments.
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In conclusion, this work provides a significant foundation for making disaggregated com-
puting practical for AI inference workloads. By achieving performance competitive with
local execution while providing the flexibility and utilisation benefits of disaggregation, we
demonstrate that the future of datacenter computing need not be constrained by the limita-
tions of monolithic machine designs. The techniques and insights developed in this project
provide a foundation for future research and development in disaggregated AI systems,
potentially enabling more efficient and flexible AI infrastructure at scale.
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Chapter 10

Declarations

10.1 Use of generative AI

We used Claude 3.5/3.7/4 (Anthropic, https://claude.ai/new) and Gemini 2.5 Pro (Google,
https://aistudio.google.com/prompts/new_chat) for the following tasks:

• Performing certain routine technical tasks, such as asking the model to generate
complex Bash commands that would be laborious to do by hand.

• Identifying potential sources using the ’search’ feature, then sifting through them to
find ones suitable for this report.

• Summarising technical concepts for my own understanding.

10.2 Ethical considerations

As our project is on the topic of LLM inference, we consider the ethical implications of
LLMs and generative AI more broadly. Unfortunately, generative AI poses opportunities
for a wide range of societal ills, such as deep-fakes, automated scams, and large-scale
disinformation. However, we do not believe our project elevates these capabilities beyond
their current level, so we do not see any direct ethical issues with our project.

10.3 Sustainability

We minimised energy usage throughout this project by avoiding running unnecessary ex-
periments, and generally taking care to avoid performing obviously wasteful computation.
We regularly checked to make sure there were no idle processes running on the GPU, since
GPUs have high power usage.

10.4 Availability of data and materials

All of our code is available in repositories at https://lsds.doc.ic.ac.uk/gitlab/groups/fractos.
Access is available on request from authorised members of the LSDS group within the De-
partment of Computing.
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